High-Performance Training, Low-Latency Inference, Audit-Ready Ops
Bare Metal & GPU Compute gives you dedicated CPUs/GPUs with direct access to accelerators and fabrics (e.g., NVLink, InfiniBand, RoCE) for AI/ML training, inference, HPC, and graphics workloads.
SolveForce designs clusters that are secure-by-default, data-fast, scheduler-aware, and cost-smartโon-prem, in colocation, and in public cloudโwired to identity, keys, network on-ramps, and evidence.
- ๐ (888) 765-8301
- โ๏ธ contact@solveforce.com
Where this fits:
โ๏ธ Platform โ Cloud โข ๐ข Hubs โ Colocation โข ๐ On-ramps โ Direct Connect
โธ๏ธ Orchestration โ Kubernetes โข ๐ง AI/RAG โ Vector Databases & RAG โข ๐ AI Knowledge Standardization
๐ Keys/Secrets โ Key Management / HSM โข Secrets Management โข Encryption
๐ Evidence/Automation โ SIEM / SOAR โข ๐ ๏ธ Pipelines โ DevOps / CI-CD โข ๐ธ Cost โ FinOps
๐ฏ Outcomes (Why SolveForce Bare Metal & GPU)
- Throughput up โ fast interconnects, pinned NUMA, and storage pipelines keep GPUs busy.
- Time-to-train down โ NCCL-aware topologies, job packing, mixed precision (FP16/BF16/FP8).
- Low-latency inference โ tuned kernels, KV cache, MIG partitioning, autoscaling.
- Secure multi-tenant โ isolation (MIG/SR-IOV), secrets in vault, per-tenant slices and quotas.
- Audit-ready โ job logs, artifacts, approvals exported to SIEM; cost and SLO dashboards.
๐งญ Scope (What we build & run)
- Nodes โ GPU (A100/H100/L40S/MI300-class), CPU (x86/ARM), NVMe tiers, high-RAM SKUs.
- Fabrics โ InfiniBand (HDR/NDR), Ethernet RoCEv2 (25/50/100/200/400G), NVLink/NVSwitch inside nodes.
- Storage โ NVMe pools, parallel filesystems (Lustre/GPFS), S3-compatible object, RDMA-enabled caches.
- Schedulers โ Kubernetes (Device Plugin/MIG), Slurm, Ray, Airflow for workflows.
- MLOps โ model registry, artifact stores, feature stores, CI-CD for training/inference. โ DevOps / CI-CD โข Vector Databases & RAG
- Security & keys โ CMK/HSM signing/encryption for models/checkpoints; short-lived tokens. โ Key Management / HSM โข Secrets Management
๐งฑ Architecture Building Blocks (Spelled out)
- Topology โ leaf/spine or dragonfly with ECMP; keep 1โ2 oversubscription for training pods; pin NCCL rings to physical layout.
- Compute isolation โ MIG (Multi-Instance GPU) for hard partitions; SR-IOV for NICs; CPU pinning & hugepages.
- Network โ RDMA for all-reduce; DCB/PFC + ECN for RoCE; QoS lanes for storage vs control.
- Storage path โ NVMe scratch โ hot cache โ parallel FS or object store; checkpoint streams with large sequential IO; GDS (GPUDirect Storage) where supported.
- Data ingress โ private on-ramps (Direct Connect/ExpressRoute/Interconnect), WAN QoS, pre-stage datasets in colo to cut egress/latency. โ Direct Connect โข Colocation
๐ ๏ธ Patterns (Choose your fit)
A) Distributed Training Cluster
- InfiniBand + NCCL; 8โ16+ GPUs/node; NVLink/NVSwitch internal.
- Slurm or Kubernetes with gang scheduling; mixed precision; gradient checkpointing; async data loaders.
- Snapshot/Resume to immutable storage; Object Lock for ransomware safety. โ Backup Immutability
B) Inference Autoscaling (Low Latency)
- Kubernetes + GPU operator; horizontal pod autoscaler; MIG for right-size shards; Triton/TensorRT/ONNXRuntime.
- KV cache & paged attention; CPU offload for non-critical ops; cold/warm pools.
C) Hybrid Burst (On-prem โ Cloud)
- Baseline on colo/on-prem; burst to cloud using identical images; artifact registry sync & keys via vault; cost guardrails. โ FinOps
D) ETL โ Feature โ Train โ Serve
- Data lake โ curated features; training on GPU nodes; registry โ rollout via CI-CD; guarded RAG with vector DB. โ Data Warehouse / Lakes โข ETL / ELT
๐ Security & Zero-Trust (Concrete, enforceable)
- Identity โ SSO/MFA for users; JIT/PAM for admin; per-namespace/queue RBAC. โ IAM / SSO / MFA โข PAM
- Secrets/keys โ models/checkpoints signed + encrypted; short-lived tokens; no plaintext in code/images. โ Secrets Management โข Key Management / HSM
- Boundary โ ZTNA for consoles; WAF/Bot for APIs; origin cloaking with mTLS. โ ZTNA โข WAF / Bot Management
- Data privacy โ DLP labels; PII kept out of scratch; field-level encryption where required. โ DLP โข Encryption
- Evidence โ scheduler events, model lineage, and job artifacts โ SIEM; SOAR performs safe revoke/rollback. โ SIEM / SOAR
๐ SLO Guardrails (Experience & capacity you can measure)
SLO / KPI | Target (Recommended) |
---|---|
GPU Utilization (cluster avg) | โฅ 70โ85% training โข โฅ 40โ70% inference |
Queue wait (p95, scheduled jobs) | โค 5โ15 min (policy dependent) |
Throughput gain (A/B) | โฅ 15โ30% after topology/cache tuning |
Job success (rolling 30d) | โฅ 98โ99% (excl. preemptions) |
Network fabric saturation (p95) | < 70โ80% sustained during all-reduce |
Storage throughput (per node) | โฅ 5โ20+ GB/s sequential (scratch/cache) |
Evidence completeness | 100% (jobs, artifacts, approvals, lineage) |
SLO breaches trigger SOAR actions (re-queue, scale-out, route adjust, rollback) and open tickets. โ SIEM / SOAR
๐ฐ FinOps for GPUs (Cost that behaves)
- Right-size: match model to MIG profile or GPU class; avoid overspec.
- Pack jobs: gang scheduling; bin-packing by mem/SM; spot/preemptible where safe.
- Mixed precision: BF16/FP16/FP8; flash attention; quantized inference (INT8/FP8).
- Checkpointing: resume long runs; avoid lost epochs on preempt.
- Data locality: pre-stage datasets in colo; minimize cross-region egress; cache hot shards.
- Power/thermals: track W/TFLOP; cap clocks when I/O-bound.
โ Guardrails & dashboards in FinOps. FinOps
๐ Observability
- GPU: util/mem/SM occupancy, power, thermals, ECC, MIG layout.
- NCCL: all-reduce time, imbalance, link errors.
- Network: RDMA counters, PFC/ECN marks, retransmits.
- Storage: read/write GB/s, IOPS, tail latency, cache hit rate.
- Scheduler: queue wait, preemptions, retries, fairness.
- Cost: $/GPU-hr, $/1K inferences, $/epoch, $/TB scanned.
All exported to SIEM and FinOps boards; alerts drive SOAR playbooks. โ SIEM / SOAR
๐ Compliance Mapping (Examples)
- PCI DSS โ key custody for model/artifacts, WAF logs for API endpoints.
- HIPAA โ PHI controls, audit trails, immutable logs, encrypted artifacts.
- ISO 27001 โ ops security, access, change evidence.
- NIST 800-53/171 โ AC/SC/CM controls; boundary & crypto.
- CMMC โ enclave separation, logging, retention.
Artifacts (lineage, signatures, approvals) are exportable for auditors.
๐ ๏ธ Implementation Blueprint (No-Surprise Rollout)
1) Workload inventory โ training vs inference; models, params, datasets, latency targets.
2) Site & fabric โ InfiniBand vs RoCE; leaf/spine; ECMP; NVLink topology.
3) Nodes & storage โ GPU class, NVMe tiers, parallel FS/object; GDS where supported.
4) Scheduler โ K8s Device Plugin/MIG or Slurm; gang scheduling; quota & fairness.
5) Security โ SSO/MFA, ZTNA, vault, CMK/HSM, WAF; DLP labels on datasets.
6) Pipelines โ CI-CD for train/serve; signed artifacts; model registry.
7) SLOs & dashboards โ utilization, queue wait, fabric/storage health, cost.
8) DR/backup โ immutable checkpoints, artifact registry backups; restore drills. โ Cloud Backup โข Backup Immutability
9) Operate โ weekly posture & cost reviews; quarterly perf tune; publish RCAs & wins.
โ Pre-Engagement Checklist
- ๐ฏ Models/workloads, epochs, batch sizes, latency/throughput goals.
- ๐ง Fabric choice (IB/RoCE), ports/speeds, NVLink presence, topology maps.
- ๐ฅ๏ธ GPU types/MIG needs; CPU/RAM ratios; NVMe capacity.
- ๐๏ธ Storage (scratch/cache/parallel FS/object), GDS readiness.
- โธ๏ธ Scheduler (K8s/Slurm/Ray), quotas, preemption policy.
- ๐ Identity/keys/secrets, ZTNA/WAF posture, DLP policy for datasets.
- ๐ On-ramps (Direct Connect/ExpressRoute/Interconnect), colo presence.
- ๐ SLO & FinOps targets; SIEM/SOAR integration; evidence format.
๐ Where Bare Metal & GPU Compute Fits (Recursive View)
1) Grammar โ runs on Connectivity & Networks & Data Centers.
2) Syntax โ provisioned via Cloud and Infrastructure as Code; orchestrated by Kubernetes or Slurm.
3) Semantics โ Cybersecurity preserves truth; keys/secrets prove custody.
4) Pragmatics โ SolveForce AI learns from telemetry and suggests pack/topology/cache optimizations.
5) Foundation โ consistent terms via Primacy of Language.
6) Map โ indexed in the SolveForce Codex & Knowledge Hub.
๐ Build GPU Clusters That Are Fast, Secure & Auditable
- ๐ (888) 765-8301
- โ๏ธ contact@solveforce.com
Related pages:
Cloud โข Colocation โข Direct Connect โข Kubernetes โข Vector Databases & RAG โข AI Knowledge Standardization โข Data Warehouse / Lakes โข ETL / ELT โข DevOps / CI-CD โข FinOps โข Encryption โข Key Management / HSM โข Secrets Management โข SIEM / SOAR โข Cybersecurity โข Knowledge Hub