๐ŸŽฎ Bare Metal & GPU Compute

High-Performance Training, Low-Latency Inference, Audit-Ready Ops

Bare Metal & GPU Compute gives you dedicated CPUs/GPUs with direct access to accelerators and fabrics (e.g., NVLink, InfiniBand, RoCE) for AI/ML training, inference, HPC, and graphics workloads.
SolveForce designs clusters that are secure-by-default, data-fast, scheduler-aware, and cost-smartโ€”on-prem, in colocation, and in public cloudโ€”wired to identity, keys, network on-ramps, and evidence.

Where this fits:
โ˜๏ธ Platform โ†’ Cloud โ€ข ๐Ÿข Hubs โ†’ Colocation โ€ข ๐Ÿ”— On-ramps โ†’ Direct Connect
โ˜ธ๏ธ Orchestration โ†’ Kubernetes โ€ข ๐Ÿง  AI/RAG โ†’ Vector Databases & RAG โ€ข ๐Ÿ“š AI Knowledge Standardization
๐Ÿ”‘ Keys/Secrets โ†’ Key Management / HSM โ€ข Secrets Management โ€ข Encryption
๐Ÿ“Š Evidence/Automation โ†’ SIEM / SOAR โ€ข ๐Ÿ› ๏ธ Pipelines โ†’ DevOps / CI-CD โ€ข ๐Ÿ’ธ Cost โ†’ FinOps


๐ŸŽฏ Outcomes (Why SolveForce Bare Metal & GPU)

  • Throughput up โ€” fast interconnects, pinned NUMA, and storage pipelines keep GPUs busy.
  • Time-to-train down โ€” NCCL-aware topologies, job packing, mixed precision (FP16/BF16/FP8).
  • Low-latency inference โ€” tuned kernels, KV cache, MIG partitioning, autoscaling.
  • Secure multi-tenant โ€” isolation (MIG/SR-IOV), secrets in vault, per-tenant slices and quotas.
  • Audit-ready โ€” job logs, artifacts, approvals exported to SIEM; cost and SLO dashboards.

๐Ÿงญ Scope (What we build & run)

  • Nodes โ€” GPU (A100/H100/L40S/MI300-class), CPU (x86/ARM), NVMe tiers, high-RAM SKUs.
  • Fabrics โ€” InfiniBand (HDR/NDR), Ethernet RoCEv2 (25/50/100/200/400G), NVLink/NVSwitch inside nodes.
  • Storage โ€” NVMe pools, parallel filesystems (Lustre/GPFS), S3-compatible object, RDMA-enabled caches.
  • Schedulers โ€” Kubernetes (Device Plugin/MIG), Slurm, Ray, Airflow for workflows.
  • MLOps โ€” model registry, artifact stores, feature stores, CI-CD for training/inference. โ†’ DevOps / CI-CD โ€ข Vector Databases & RAG
  • Security & keys โ€” CMK/HSM signing/encryption for models/checkpoints; short-lived tokens. โ†’ Key Management / HSM โ€ข Secrets Management

๐Ÿงฑ Architecture Building Blocks (Spelled out)

  • Topology โ€” leaf/spine or dragonfly with ECMP; keep 1โ€“2 oversubscription for training pods; pin NCCL rings to physical layout.
  • Compute isolation โ€” MIG (Multi-Instance GPU) for hard partitions; SR-IOV for NICs; CPU pinning & hugepages.
  • Network โ€” RDMA for all-reduce; DCB/PFC + ECN for RoCE; QoS lanes for storage vs control.
  • Storage path โ€” NVMe scratch โ†’ hot cache โ†’ parallel FS or object store; checkpoint streams with large sequential IO; GDS (GPUDirect Storage) where supported.
  • Data ingress โ€” private on-ramps (Direct Connect/ExpressRoute/Interconnect), WAN QoS, pre-stage datasets in colo to cut egress/latency. โ†’ Direct Connect โ€ข Colocation

๐Ÿ› ๏ธ Patterns (Choose your fit)

A) Distributed Training Cluster

  • InfiniBand + NCCL; 8โ€“16+ GPUs/node; NVLink/NVSwitch internal.
  • Slurm or Kubernetes with gang scheduling; mixed precision; gradient checkpointing; async data loaders.
  • Snapshot/Resume to immutable storage; Object Lock for ransomware safety. โ†’ Backup Immutability

B) Inference Autoscaling (Low Latency)

  • Kubernetes + GPU operator; horizontal pod autoscaler; MIG for right-size shards; Triton/TensorRT/ONNXRuntime.
  • KV cache & paged attention; CPU offload for non-critical ops; cold/warm pools.

C) Hybrid Burst (On-prem โ†” Cloud)

  • Baseline on colo/on-prem; burst to cloud using identical images; artifact registry sync & keys via vault; cost guardrails. โ†’ FinOps

D) ETL โ†’ Feature โ†’ Train โ†’ Serve

  • Data lake โ†’ curated features; training on GPU nodes; registry โ†’ rollout via CI-CD; guarded RAG with vector DB. โ†’ Data Warehouse / Lakes โ€ข ETL / ELT

๐Ÿ”’ Security & Zero-Trust (Concrete, enforceable)

  • Identity โ€” SSO/MFA for users; JIT/PAM for admin; per-namespace/queue RBAC. โ†’ IAM / SSO / MFA โ€ข PAM
  • Secrets/keys โ€” models/checkpoints signed + encrypted; short-lived tokens; no plaintext in code/images. โ†’ Secrets Management โ€ข Key Management / HSM
  • Boundary โ€” ZTNA for consoles; WAF/Bot for APIs; origin cloaking with mTLS. โ†’ ZTNA โ€ข WAF / Bot Management
  • Data privacy โ€” DLP labels; PII kept out of scratch; field-level encryption where required. โ†’ DLP โ€ข Encryption
  • Evidence โ€” scheduler events, model lineage, and job artifacts โ†’ SIEM; SOAR performs safe revoke/rollback. โ†’ SIEM / SOAR

๐Ÿ“ SLO Guardrails (Experience & capacity you can measure)

SLO / KPITarget (Recommended)
GPU Utilization (cluster avg)โ‰ฅ 70โ€“85% training โ€ข โ‰ฅ 40โ€“70% inference
Queue wait (p95, scheduled jobs)โ‰ค 5โ€“15 min (policy dependent)
Throughput gain (A/B)โ‰ฅ 15โ€“30% after topology/cache tuning
Job success (rolling 30d)โ‰ฅ 98โ€“99% (excl. preemptions)
Network fabric saturation (p95)< 70โ€“80% sustained during all-reduce
Storage throughput (per node)โ‰ฅ 5โ€“20+ GB/s sequential (scratch/cache)
Evidence completeness100% (jobs, artifacts, approvals, lineage)

SLO breaches trigger SOAR actions (re-queue, scale-out, route adjust, rollback) and open tickets. โ†’ SIEM / SOAR


๐Ÿ’ฐ FinOps for GPUs (Cost that behaves)

  • Right-size: match model to MIG profile or GPU class; avoid overspec.
  • Pack jobs: gang scheduling; bin-packing by mem/SM; spot/preemptible where safe.
  • Mixed precision: BF16/FP16/FP8; flash attention; quantized inference (INT8/FP8).
  • Checkpointing: resume long runs; avoid lost epochs on preempt.
  • Data locality: pre-stage datasets in colo; minimize cross-region egress; cache hot shards.
  • Power/thermals: track W/TFLOP; cap clocks when I/O-bound.

โ†’ Guardrails & dashboards in FinOps. FinOps


๐Ÿ“Š Observability

  • GPU: util/mem/SM occupancy, power, thermals, ECC, MIG layout.
  • NCCL: all-reduce time, imbalance, link errors.
  • Network: RDMA counters, PFC/ECN marks, retransmits.
  • Storage: read/write GB/s, IOPS, tail latency, cache hit rate.
  • Scheduler: queue wait, preemptions, retries, fairness.
  • Cost: $/GPU-hr, $/1K inferences, $/epoch, $/TB scanned.

All exported to SIEM and FinOps boards; alerts drive SOAR playbooks. โ†’ SIEM / SOAR


๐Ÿ“œ Compliance Mapping (Examples)

  • PCI DSS โ€” key custody for model/artifacts, WAF logs for API endpoints.
  • HIPAA โ€” PHI controls, audit trails, immutable logs, encrypted artifacts.
  • ISO 27001 โ€” ops security, access, change evidence.
  • NIST 800-53/171 โ€” AC/SC/CM controls; boundary & crypto.
  • CMMC โ€” enclave separation, logging, retention.

Artifacts (lineage, signatures, approvals) are exportable for auditors.


๐Ÿ› ๏ธ Implementation Blueprint (No-Surprise Rollout)

1) Workload inventory โ€” training vs inference; models, params, datasets, latency targets.
2) Site & fabric โ€” InfiniBand vs RoCE; leaf/spine; ECMP; NVLink topology.
3) Nodes & storage โ€” GPU class, NVMe tiers, parallel FS/object; GDS where supported.
4) Scheduler โ€” K8s Device Plugin/MIG or Slurm; gang scheduling; quota & fairness.
5) Security โ€” SSO/MFA, ZTNA, vault, CMK/HSM, WAF; DLP labels on datasets.
6) Pipelines โ€” CI-CD for train/serve; signed artifacts; model registry.
7) SLOs & dashboards โ€” utilization, queue wait, fabric/storage health, cost.
8) DR/backup โ€” immutable checkpoints, artifact registry backups; restore drills. โ†’ Cloud Backup โ€ข Backup Immutability
9) Operate โ€” weekly posture & cost reviews; quarterly perf tune; publish RCAs & wins.


โœ… Pre-Engagement Checklist

  • ๐ŸŽฏ Models/workloads, epochs, batch sizes, latency/throughput goals.
  • ๐Ÿ–ง Fabric choice (IB/RoCE), ports/speeds, NVLink presence, topology maps.
  • ๐Ÿ–ฅ๏ธ GPU types/MIG needs; CPU/RAM ratios; NVMe capacity.
  • ๐Ÿ—ƒ๏ธ Storage (scratch/cache/parallel FS/object), GDS readiness.
  • โ˜ธ๏ธ Scheduler (K8s/Slurm/Ray), quotas, preemption policy.
  • ๐Ÿ” Identity/keys/secrets, ZTNA/WAF posture, DLP policy for datasets.
  • ๐Ÿ”— On-ramps (Direct Connect/ExpressRoute/Interconnect), colo presence.
  • ๐Ÿ“Š SLO & FinOps targets; SIEM/SOAR integration; evidence format.

๐Ÿ”„ Where Bare Metal & GPU Compute Fits (Recursive View)

1) Grammar โ€” runs on Connectivity & Networks & Data Centers.
2) Syntax โ€” provisioned via Cloud and Infrastructure as Code; orchestrated by Kubernetes or Slurm.
3) Semantics โ€” Cybersecurity preserves truth; keys/secrets prove custody.
4) Pragmatics โ€” SolveForce AI learns from telemetry and suggests pack/topology/cache optimizations.
5) Foundation โ€” consistent terms via Primacy of Language.
6) Map โ€” indexed in the SolveForce Codex & Knowledge Hub.


๐Ÿ“ž Build GPU Clusters That Are Fast, Secure & Auditable

Related pages:
Cloud โ€ข Colocation โ€ข Direct Connect โ€ข Kubernetes โ€ข Vector Databases & RAG โ€ข AI Knowledge Standardization โ€ข Data Warehouse / Lakes โ€ข ETL / ELT โ€ข DevOps / CI-CD โ€ข FinOps โ€ข Encryption โ€ข Key Management / HSM โ€ข Secrets Management โ€ข SIEM / SOAR โ€ข Cybersecurity โ€ข Knowledge Hub


- SolveForce -

๐Ÿ—‚๏ธ Quick Links

Home

Fiber Lookup Tool

Suppliers

Services

Technology

Quote Request

Contact

๐ŸŒ Solutions by Sector

Communications & Connectivity

Information Technology (IT)

Industry 4.0 & Automation

Cross-Industry Enabling Technologies

๐Ÿ› ๏ธ Our Services

Managed IT Services

Cloud Services

Cybersecurity Solutions

Unified Communications (UCaaS)

Internet of Things (IoT)

๐Ÿ” Technology Solutions

Cloud Computing

AI & Machine Learning

Edge Computing

Blockchain

VR/AR Solutions

๐Ÿ’ผ Industries Served

Healthcare

Finance & Insurance

Manufacturing

Education

Retail & Consumer Goods

Energy & Utilities

๐ŸŒ Worldwide Coverage

North America

South America

Europe

Asia

Africa

Australia

Oceania

๐Ÿ“š Resources

Blog & Articles

Case Studies

Industry Reports

Whitepapers

FAQs

๐Ÿค Partnerships & Affiliations

Industry Partners

Technology Partners

Affiliations

Awards & Certifications

๐Ÿ“„ Legal & Privacy

Privacy Policy

Terms of Service

Cookie Policy

Accessibility

Site Map


๐Ÿ“ž Contact SolveForce
Toll-Free: (888) 765-8301
Email: support@solveforce.com

Follow Us: LinkedIn | Twitter/X | Facebook | YouTube